
Question 05. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β , to come to rest. If the total time elapsed is t seconds, then evaluate (a) the maximum velocity reached and (b) the total distance travelled.

Solution (a) Let the car accelerates for time t_1 and decelerates for time t_2 . Then,

$$t = t_1 + t_2$$
 ...(i)

and corresponding velocity-time graph will be as shown in Fig. 6.32.

From the graph,

$$\alpha = \text{slope of line } OA = \frac{v_{\text{max}}}{t_1} \quad \text{or} \quad t_1 = \frac{v_{\text{max}}}{\alpha} \qquad \dots \text{(ii)}$$

and

$$\beta = -$$
 slope of line $AB = \frac{v_{\text{max}}}{t_2}$

or

$$t_2 = \frac{v_{\text{max}}}{\beta} \qquad \dots \text{(iii)}$$

From Eqs. (i), (ii) and (iii), we get

$$\frac{v_{\text{max}}}{\alpha} + \frac{v_{\text{max}}}{\beta} = t$$

or

$$v_{\text{max}}\left(\frac{\alpha+\beta}{\alpha\beta}\right) =$$

or

$$v_{\text{max}} = \frac{\alpha \beta t}{\alpha + \beta}$$

Ans.

(b) Total distance = total displacement = area under v-t graph

$$= \frac{1}{2} \times t \times v_{\text{max}}$$
$$= \frac{1}{2} \times t \times \frac{\alpha \beta t}{\alpha + \beta}$$

Distance =
$$\frac{1}{2} \left(\frac{\alpha \beta t^2}{\alpha + \beta} \right)$$

Ans.